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Spatial structure of passive particles with inertia transported by a chaotic flow
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We study the spatial patterns formed by inertial particles suspended on the surface of a smooth chaotic flow.
In addition to the well-known phenomenon of clustering, we show that, in the presence of diffusion and when
a steady space-dependent source of particles is considered, the density of particles may show smooth or fractal
features in the low density areas. The conditions needed for the appearance of these structures and their
characterization with the first order structure function are also calculated.
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In recent years much effort has been given to the study o&(8—1)7 is negative, and when they are lightgy is posi-
the spatial patterns that chemically or biologically active partive. The sign ofr, is not relevant in this work as we are
ticles form when they are advected by chaotic fldds 6). considering that the particles are moving on the surface of
Generally, it is supposed that the interplay between the intetthe fluid.
acting dynamics of the particles and the transport due to the The important fact is that, although we assume that the
flow gives rise to very complex spatial structures with statis-fluid flow is incompressibleV -u=0, the particle velocity,
tical properties very different from those of passiwe the  however, is compressibl&, -v=7,V-(u-V)u#0.
sense of nonreactingarticles. However, recently have come  The evolution of the number density or concentration of
to light other mechanisms, different from chemical or bio-particlesn(x,t) is given by
logical activity, that can also give rise to complex spatial (D
patterns. For example, [7—11] the inertia of the particles is an(x,t
proposed as a relevant physical property that can produce the ot +V-[n(xHV(x,D]=SX)+DVn(x1), (2
aggregation of particles. The inertia induced on the particles
by the surrounding fluid perturbs the velocity of the particleswhereD is the diffusivity of the particles, coming from their
with respect to that of the fluid; thus the particles do notBrownian motion at very small length scales, &@() is a
strictly follow the fluid[12], and they tend to cluster. stationary source of particles with zero spatial mean. The

In this work we will study the patterns formed by passivefield n has been assumed to have no back influence on the
inertial particles transported by a chaotic flow. Apart fromvelocity v. Thus, after reading Eq2) it is worth mentioning
the above mentioned phenomenon of clustering, we wilthat this work is concerned with the study of the spatial pat-
show that, when a source of particles is present, fractal oterns of a forced passive scalar advected by a compressible
nonfractal structures appear in the spatial areas where thwo-dimensional2D) chaotic flow.
particles are not clustered, which in the following will be  Equation(2) is rewritten as
called thebackgroundor B set. Moreover, we explicitly write
down the conditions for the appearance of these structures an(x,t)
and characterize them by calculating the first order structure at
function.

The main physical assumptions in the rest of this work arewvhich can be solved using the so-called Feynmann-Kac or
as follows. (i) The particles are very small so that the fluid stochastic Lagrangian representatiassuming a zero initial
around them is viscous and the Stokes time, which is a meaondition [13]:
sure of the inertia, is smallii) The particles form a con-
tinuum djstribution.(iii) We n.eglect buoyancy forces. .AI_SO’ n(x,t):< ftdSS[I’(S)]e_ftsv'v(r(s,))ds,>
we consider no sedimentation processes and we limit the 0
study to particles driven by a two-dimensional fldi.) The
flow exhibits chaotic advectionthat is, there is exponential wherer(s) is the solution of
increase of the distance between two initially close fluid par-
cels. dr
Let us consider a small spherical particle of radiuand d—szv(r(s),s)+ 2Dy ®)
with densityp, suspended in a bidimensional fluid with den-
sity p and viscosityv. The velocity of the particle is related  that satisfies the final conditior(t)=x. 5 (s) is a normal-

+(v-V)n(x,t)=S(x)+DV2n—nV-v, (3

1]1 (4)

to the driving fluid velocityu by [7,12] ized vector-valued white noise term with zero mean, i.e.,
(n(9)),=0 and(n(s)n(s')),=15(s—s’), with | the iden-
v=u+(B—1)7 [du+(u-V)u]+0O(7?), (1) tity matrix. The averagg-), is taken over the different sto-

chastic trajectories(s) ending at the stated final point
where 8=3p/(p+2p,) and 7 is the Stokes time, which is Equation(4) relates a Eulerian quantity, thex,t) field,
r=a?/3Bv. Note that for particles heavier than the fluig  with a Lagrangian one, the trajectory of any particle)
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ending atx at timet. Because of the zero spatial mean of the
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In the large time limitt—oco, we can approximate(x,t

source, indicating that there are sources and sinks of par—,s)~b(x,%,0)=b(x) because it dominates in the time
ticles, the total concentration of particles is constant. Moreintegral. Thus it is clear from Ed6) that, for long times, the

over, in the long time limit the concentration field ap-

gradient of the fieldh(x,t—20) depends critically on the sign

proaches a state with the same time dependence as the flef the exponentiah —b(x), in such a way that when in a

of particles[7], which is the same as that of the fluid flow.
Thus, if the given velocity field is periodic in time, the con-

spatial area of the background-b(x) >0 the gradients are
not bounded, i.en is a nonhomogenous rough field in that

centration field approaches a periodic steady field. Nonethespatial zone. In contrast, in those areas whereb(x)<0

less, the spatial statistical propertiesrdfx,t) remain con-
stant for large times.

In the absence of the source term the physical mech
nisms of clustering are well understofd,8]. The particles
aggregate on those spatial points whdrgx,t,ty)=[1/(t
—to)]f{OV~v(r(s),s)ds<O with t;=0. These constitute a
fractal set which in the following will be called theuster-
ing or C attractor. Diffusion acts to stop the exponential
growth of concentration on this fractal set.

With the source term the above mentioned scenario i
maintained, but now the injection and subtraction of particle

of the field n(x,t), and we keep in mind that is fractal
where it is a singular function of. For simplicity, we first
take the large Schmidt number limiftD, and neglect diffu-
sion, i.e., we neglect the average in Ed). We calculate
(formally) the difference ofn for two infinitesimally close
particle points,én=n[r(s)+ or(s),s]—n[r(s),s], by inte-
grating backward in time the Lagrangian trajectory of two
particles finishing at timé in the positionsx+ éx and X,

the density field is smooth. Concerning the clustering areas,
as b(x) is always negative, the sign of the exponential is

a[50.<,itive, and they are always rough.

It is important to note that the dynamics of a passive
scalar advected by a compressible flow, as given by(8yq.
is rather analogous to that of an advected passive scalar with
finite lifetime[4,6,15. In fact, the above calculations closely
follow those shown irf4]. The analogy is that the last term
in Eqg. (3) acts as a decaying term at all spatial points but in

the clustering attractor. The main difference comes from the

Ny

may or may not form fractal patterns in the background set.
To see this we consider the behavior of the spatial gradients

egative values db(x) in this attractor.

Following this analogy we can characterize the fractal
patterns of then field. We first neglect the spatial dependence
of b(x) by performing spatial averaggs] in every set where
it takes a constant sign, that is, in tBeandC sets. Thus, we
denote ah®=(b(x))c, andb®=(b(x))g the spatial aver-
ages ofb(x) over theC set and over th® set, respectively.

It is clear thatb®<0 andb®>0. In the background the cor-
respondence wit4,6] is straightforward and we have that

snB~sre® with snB denoting on in the B set, anddr

respectively. Then we come back to the properties of thé=|dr(t)]. From[4] a®=min(1p®/)). In the C set this cor-
fluid and we note that, in particular, the trajectories of theréspondence is not so obvious; however, from .6n
fluid parcels separate exponentially with time. The nonlinear~ sre® ~?) and the fact that in the backward-in-time dy-
relation between fluid velocity and particle velocity indicatesnamics or~| sr(0)|e ™!, we obtain thatsn®~ sr a with
that the trajectories of the particles also diverge exponenC=hC/\. This expression is valid for small scales larger

tially for long times, that is,|dr(s)|~|&r(0)|expQs), for
nearly all the initial orientations of the initial particle sepa-
ration or(0). The positive number\ is the maximum

than the typical diffusion length scalé,;~+/2D/\, and
shows that in the clustering séh grows when the length
scale decreases.

Lyapunov exponent associated with the chaotic trajectories A proper characterization of the spatial structure, acces-

of the particles as driven by the field[14]. In principle, A

sible to experiments, is the first order structure function, i.e.,

depends both on the initial condition and on the duration ofne spatial average @i along a one-dimensional spatial cut

the trajectory. However, in the long-time limit is the same

(taken of unit length for simplicity (Sn). Obviously{én)

for almost all trajectories, but deviations can persist on frac-:<5nc>c+<5ns>8_ Along the transect, the number of seg-

tal sets of measure zefd4]. These can give rise to multi-
fractal corrections[4] that will not be considered in the
present work. Therefore, in the following we assume that

ments of lengthér is 1/6r, and the number of segments
containing parts of the clustering setds P01, D, being
the fractal dimension of this attractor. We obtain

takes its most probable value and we neglect its spatial or

time dependence.

Finally, the gradient of the field at a given spatiotemporal {&n)= 6r(8r) Po*1sr «“4 Sr[(sr)"1—(6r) Potisre’,

point (x,t) is
t
m-Vn(x,t)%m~<fdsVS[r(s)]e“b(x't's)](ts))
0

—m- ( ftdss[r(s)]e[)\*b(xrtys)](tfs)
0

t
xf de(V-v)e"(S"")). (6)

Herem is a unit vector in the direction of the finak (t).

(7)

Therefore, (6n) scales asér® for small ér (but larger
than Ly with a=min(2—Dy+bC/\,a®)=min(2—D,
+b®/\,min(1p®/\)). More specifically, we obtain the result
that when the background is smooth ther1 if Dy<1
+bC/\ (that s, if the clustering attractor is thin enoggand
a=2—Dy+bC/\ if Dg>1+b%/\. On the contrary, when
the background is roughe=bB/\ when Dy<1+bC/\
—bB/\, anda=2—Dy+bC/\ in the opposite case. In con-
clusion, wherD is small enoughsn scales as in th8 set;
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FIG. 1. Clustering attractor
when the final time is 100 units.
(@ 7,=—0.005, (b) 7,=—0.01,
and(c) 7,=—0.03.(d) shows the
spatial points wherd(100,0)<0
(7,=—0.03).

0.0
0.0

however, when it is not too small the existence of the clus- In order to calculate transects of thefield we integrate

tering set strongly changes the scalingsof. Eq. (5) backward in time with initial conditions on a one-
To check our analytical predictions we performed numeri-dimensional cut withy=1 and Osx<2#. Many different

cal simulations with the simple 2D model flow defined by trajectories are obtained for different realizations of the

the stream function noise. Then we calculate the scalar field for any of these
trajectories following Eq.4) and, finally, we perform the
P(X,y,t)=Asin(x+ B coswt)siny, (8)  averaging. In this way the values bf andb® in the transect

_ ) ) are calculated and displayed in Table I. In Fig. 2 these
which, due to the time dependence, can show chaotic advegnsects are shown for a value Bf=2xX 104 and .=
tion. A,B, andw are real positive parameters, and periodic_ 0o5-0.01,-0.03. Figure 23) is for a very smallrg=
boundary conditions are used. The equations of motion for_g go5, 5o the effect of inertia is almost negligible and par-
an element of fluid are given by=d,¢ andy=—d,¢. In  ticles are distributed through almost the whole phase space,
the following we always usé& =10, B=10, andw=1. We  with no significant peaks in the concentration. Moreover, the
also take negative values of in our simulations, but simi- spatial structure is always fractal as this case should corre-
lar results are obtained when it is positive. For the sourcgpond with the passive scalar. Feg=—0.01, Fig. Zb),
term we useS(x,y) = sin(x)cosfy). there appear peaks in the concentration which correspond to
First, in Figs. 1a), 1(b), and Xc), we show the clustering the clustering attractor. Between peaks one can also observe
attractor(when the final time is 100 unitdor 7,=—0.005, the rough structure of the background set. This is because
—0.01, and—0.03. It is calculated by evolving many par- A\~0.60>b®~0.34. In contrast, in Fig. (), obtained for
ticles, which initially are uniformly distributed in the interval 7= —0.03, the background areas are always smooth be-
0=<x=2mw, 0sy=<n, with the dynamical systerdr/dt=v. cause\ ~0.92<bB~2.07.
QI;SL(CJ)OI?O)FIig.nléth\iIY/ 2 ?(li:)ihf OSBZTIZI nzoxéscz\;\::]i; ttfr:é;[ as TABLE I. b® and b€ fractal dimensions and Lyapunov expo-
nents for different values of

expected, the result is the same as the clustering attractor In P

Fig. 1(c). The numerical values of the fractal dimensions of , b8 b D N
the C set and of the Lyapunov exponents for the flow of P 0

particles are shown in Table | for these values of the —0.005 0.13M) —0.015(2) 1.9%) 0.588)
parameter. From these numbers we can observe that as the

absolute value of, becomes larger, the smaller is the fractal —0.01 0.3477) —0.018(7) 1.919) 0.60(2)
dimension of theC set, i.e., it ismore fractal For very small

values ofr, the particles are almost distributed through the_—q 03 2.0784) —0.177(9) 1.512) 0.91(9)

whole system.
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FIG. 3. Structure functions for the corresponding transects in
Fig. 2. The solid line has the slope given by the theoretical predic-
. _ . C .
FIG. 2. Transects of the density field along the lipe1. (@) 0N @=min(Z—Do+b IN,min(10®/X)).
7,=—0.005,(b) 7,=—0.01, and(c) 7,=—0.03. Other parameters

used areA=10, B=10, w=1, andD=2x10"*. or fractal features depending on the relation between the

Lyapunov exponents of the chaotic flow of the particles and
Finally, we calculate the first order structure functionthe values of the field(x,t,0)= (1) [5V -v(r(s),s)ds, in
(on) for the transects of Fig. 2. This is shown in Fig. 3, the long-time limit. Also, the characterization of the spatial
where we also plot a straight line with the slopegiven in  gtryctures of the particles has been performed with the first
the discussion below Ed7). The agreement is rather accu- orger spatial structure function, and we have found that it

rate for scales larger than,~0.025. scales with an exponent that depends on the fractal dimen-

_ Summing up, we have shown that a very complex spatialjo, of theC set, the maximum Lyapunov exponent of the
distribution may arise when particles with inertia are trans-

ported by a chaotic flow. The inertia induces the aggregatiorgﬁglglzztgow’ and the averages valuesbek) over theC

of particles in the so-called clustering set, diffusion stops the '

growing without bound of the density of particles in this set, | acknowledge invaluable discussions with Emilio
and then the presence of the source term gives rise to tHdernandez-Gara and Zolta Neufeld. | also acknowledge

formation of inhomogeneous structures in the backgroundE.H.G. for a critical reading of the manuscript. This work
set. We have shown that these structures may show smootias supported by the MECD of Spain.
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