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Spatial structure of passive particles with inertia transported by a chaotic flow
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Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, I-00185, Roma, Italy

~Received 29 April 2002; published 27 August 2002!

We study the spatial patterns formed by inertial particles suspended on the surface of a smooth chaotic flow.
In addition to the well-known phenomenon of clustering, we show that, in the presence of diffusion and when
a steady space-dependent source of particles is considered, the density of particles may show smooth or fractal
features in the low density areas. The conditions needed for the appearance of these structures and their
characterization with the first order structure function are also calculated.
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In recent years much effort has been given to the stud
the spatial patterns that chemically or biologically active p
ticles form when they are advected by chaotic flows@1–6#.
Generally, it is supposed that the interplay between the in
acting dynamics of the particles and the transport due to
flow gives rise to very complex spatial structures with sta
tical properties very different from those of passive~in the
sense of nonreacting! particles. However, recently have com
to light other mechanisms, different from chemical or b
logical activity, that can also give rise to complex spat
patterns. For example, in@7–11# the inertia of the particles is
proposed as a relevant physical property that can produce
aggregation of particles. The inertia induced on the partic
by the surrounding fluid perturbs the velocity of the partic
with respect to that of the fluid; thus the particles do n
strictly follow the fluid @12#, and they tend to cluster.

In this work we will study the patterns formed by passi
inertial particles transported by a chaotic flow. Apart fro
the above mentioned phenomenon of clustering, we
show that, when a source of particles is present, fracta
nonfractal structures appear in the spatial areas where
particles are not clustered, which in the following will b
called thebackgroundor B set. Moreover, we explicitly write
down the conditions for the appearance of these struct
and characterize them by calculating the first order struc
function.

The main physical assumptions in the rest of this work
as follows.~i! The particles are very small so that the flu
around them is viscous and the Stokes time, which is a m
sure of the inertia, is small.~ii ! The particles form a con
tinuum distribution.~iii ! We neglect buoyancy forces. Also
we consider no sedimentation processes and we limit
study to particles driven by a two-dimensional flow.~iv! The
flow exhibitschaotic advection, that is, there is exponentia
increase of the distance between two initially close fluid p
cels.

Let us consider a small spherical particle of radiusa and
with densityrp suspended in a bidimensional fluid with de
sity r and viscosityn. The velocity of the particlev is related
to the driving fluid velocityu by @7,12#

v5u1~b21!t @] tu1~u•¹!u#1Q~t2!, ~1!

whereb53r/(r12rp) and t is the Stokes time, which is
t5a2/3bn. Note that for particles heavier than the fluidtp
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[(b21)t is negative, and when they are lightertp is posi-
tive. The sign oftp is not relevant in this work as we ar
considering that the particles are moving on the surface
the fluid.

The important fact is that, although we assume that
fluid flow is incompressible“•u50, the particle velocity,
however, is compressible,“•v5tp“•(u•“)uÞ0.

The evolution of the number density or concentration
particlesn(x,t) is given by

]n~x,t !

]t
1“•@n~x,t !v~x,t !#5S~x!1D¹2n~x,t !, ~2!

whereD is the diffusivity of the particles, coming from thei
Brownian motion at very small length scales, andS(x) is a
stationary source of particles with zero spatial mean. T
field n has been assumed to have no back influence on
velocity v. Thus, after reading Eq.~2! it is worth mentioning
that this work is concerned with the study of the spatial p
terns of a forced passive scalar advected by a compres
two-dimensional~2D! chaotic flow.

Equation~2! is rewritten as

]n~x,t !

]t
1~v•¹!n~x,t !5S~x!1D¹2n2n“•v, ~3!

which can be solved using the so-called Feynmann-Kac
stochastic Lagrangian representation~assuming a zero initia
condition! @13#:

n~x,t !5K E
0

t

dsS@r ~s!#e2*s
t
“•v„r (s8)…ds8L

h , ~4!

wherer (s) is the solution of

dr

ds
5v„r ~s!,s…1A2Dh ~5!

that satisfies the final conditionr (t)5x. h (s) is a normal-
ized vector-valued white noise term with zero mean, i
^h (s)&h50 and^h (s)h (s8)&h5Id(s2s8), with I the iden-
tity matrix. The averagê•&h is taken over the different sto
chastic trajectoriesr (s) ending at the stated final pointx.

Equation~4! relates a Eulerian quantity, then(x,t) field,
with a Lagrangian one, the trajectory of any particler (s)
©2002 The American Physical Society02-1
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ending atx at timet. Because of the zero spatial mean of t
source, indicating that there are sources and sinks of
ticles, the total concentration of particles is constant. Mo
over, in the long time limit the concentration field a
proaches a state with the same time dependence as the
of particles@7#, which is the same as that of the fluid flow
Thus, if the given velocity field is periodic in time, the co
centration field approaches a periodic steady field. None
less, the spatial statistical properties ofn(x,t) remain con-
stant for large times.

In the absence of the source term the physical mec
nisms of clustering are well understood@7,8#. The particles
aggregate on those spatial points whereb(x,t,t0)[@1/(t
2t0)#* t0

t
“•v„r (s),s…ds,0 with t050. These constitute a

fractal set which in the following will be called thecluster-
ing or C attractor. Diffusion acts to stop the exponent
growth of concentration on this fractal set.

With the source term the above mentioned scenario
maintained, but now the injection and subtraction of partic
may or may not form fractal patterns in the background s
To see this we consider the behavior of the spatial gradi
of the field n(x,t), and we keep in mind thatn is fractal
where it is a singular function ofx. For simplicity, we first
take the large Schmidt number limitn/D, and neglect diffu-
sion, i.e., we neglect the average in Eq.~4!. We calculate
~formally! the difference ofn for two infinitesimally close
particle points,dn5n@r (s)1dr (s),s#2n@r (s),s#, by inte-
grating backward in time the Lagrangian trajectory of tw
particles finishing at timet in the positionsx1dx and x,
respectively. Then we come back to the properties of
fluid and we note that, in particular, the trajectories of t
fluid parcels separate exponentially with time. The nonlin
relation between fluid velocity and particle velocity indicat
that the trajectories of the particles also diverge expon
tially for long times, that is,udr (s)u;udr (0)uexp(ls), for
nearly all the initial orientations of the initial particle sep
ration dr (0). The positive numberl is the maximum
Lyapunov exponent associated with the chaotic trajecto
of the particles as driven by the fieldv @14#. In principle,l
depends both on the initial condition and on the duration
the trajectory. However, in the long-time limitl is the same
for almost all trajectories, but deviations can persist on fr
tal sets of measure zero@14#. These can give rise to multi
fractal corrections@4# that will not be considered in the
present work. Therefore, in the following we assume thal
takes its most probable value and we neglect its spatia
time dependence.

Finally, the gradient of the field at a given spatiotempo
point (x,t) is

m•“n~x,t !'m•S E
0

t

ds“S@r ~s!#e[l2b(x,t,s)]( t2s)D
2m•S E

0

t

dsS@r ~s!#e[l2b(x,t,s)]( t2s)

3E
s

t

dw“~“•v!el(s2w)D . ~6!

Herem is a unit vector in the direction of the finaldr (t).
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In the large time limit,t→`, we can approximateb(x,t
→`,s)'b(x,`,0)[b(x) because it dominates in the tim
integral. Thus it is clear from Eq.~6! that, for long times, the
gradient of the fieldn(x,t→`) depends critically on the sign
of the exponentiall2b(x), in such a way that when in a
spatial area of the backgroundl2b(x).0 the gradients are
not bounded, i.e.,n is a nonhomogenous rough field in th
spatial zone. In contrast, in those areas wherel2b(x),0
the density field is smooth. Concerning the clustering are
as b(x) is always negative, the sign of the exponential
positive, and they are always rough.

It is important to note that the dynamics of a pass
scalar advected by a compressible flow, as given by Eq.~3!,
is rather analogous to that of an advected passive scalar
finite lifetime @4,6,15#. In fact, the above calculations close
follow those shown in@4#. The analogy is that the last term
in Eq. ~3! acts as a decaying term at all spatial points but
the clustering attractor. The main difference comes from
negative values ofb(x) in this attractor.

Following this analogy we can characterize the frac
patterns of then field. We first neglect the spatial dependen
of b(x) by performing spatial averages@6# in every set where
it takes a constant sign, that is, in theB andC sets. Thus, we
denote asbC5^b(x)&C , and bB5^b(x)&B the spatial aver-
ages ofb(x) over theC set and over theB set, respectively.
It is clear thatbC,0 andbB.0. In the background the cor
respondence with@4,6# is straightforward and we have tha
dnB;dr aB

, with dnB denoting dn in the B set, anddr
[udr (t)u. From @4# aB5min(1,bB/l). In theC set this cor-
respondence is not so obvious; however, from Eq.~6! dnC

;dre(l2bC) and the fact that in the backward-in-time d
namics dr;udr (0)ue2lt, we obtain thatdnC;dr aC

with
aC5bC/l. This expression is valid for small scales larg
than the typical diffusion length scale,Ld;A2D/l, and
shows that in the clustering setdn grows when the length
scale decreases.

A proper characterization of the spatial structure, acc
sible to experiments, is the first order structure function, i
the spatial average ofdn along a one-dimensional spatial c
~taken of unit length for simplicity!, ^dn&. Obviously ^dn&
5^dnC&C1^dnB&B . Along the transect, the number of se
ments of lengthdr is 1/dr , and the number of segmen
containing parts of the clustering set isdr 2D011, D0 being
the fractal dimension of this attractor. We obtain

^dn&5dr ~dr !2D011dr aC
1dr @~dr !212~dr !2D011#dr aB

.
~7!

Therefore, ^dn& scales asdr a for small dr ~but larger
than Ld) with a5min(22D01bC/l,aB)5min„22D0
1bC/l,min(1,bB/l)…. More specifically, we obtain the resu
that when the background is smooth thena51 if D0,1
1bC/l ~that is, if the clustering attractor is thin enough!, and
a522D01bC/l if D0.11bC/l. On the contrary, when
the background is rougha5bB/l when D0,11bC/l
2bB/l, anda522D01bC/l in the opposite case. In con
clusion, whenD0 is small enoughdn scales as in theB set;
2-2
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FIG. 1. Clustering attractor
when the final time is 100 units
~a! tp520.005, ~b! tp520.01,
and ~c! tp520.03. ~d! shows the
spatial points whereb(100,0),0
(tp520.03).
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however, when it is not too small the existence of the cl
tering set strongly changes the scaling ofdn.

To check our analytical predictions we performed nume
cal simulations with the simple 2D model flow defined
the stream function

c~x,y,t !5A sin~x1B coswt!siny, ~8!

which, due to the time dependence, can show chaotic ad
tion. A,B, andw are real positive parameters, and period
boundary conditions are used. The equations of motion
an element of fluid are given byẋ5]yc and ẏ52]xc. In
the following we always useA510, B510, andw51. We
also take negative values oftp in our simulations, but simi-
lar results are obtained when it is positive. For the sou
term we useS(x,y)5sin(x)cos(y).

First, in Figs. 1~a!, 1~b!, and 1~c!, we show the clustering
attractor~when the final time is 100 units! for tp520.005,
20.01, and20.03. It is calculated by evolving many pa
ticles, which initially are uniformly distributed in the interva
0<x<2p, 0<y<p, with the dynamical systemdr /dt5v.
Also in Fig. 1~d! we plot the spatial points where theb(t
5100,0) is negative fortp520.03, and we can see that, a
expected, the result is the same as the clustering attract
Fig. 1~c!. The numerical values of the fractal dimensions
the C set and of the Lyapunov exponents for the flow
particles are shown in Table I for these values of thetp
parameter. From these numbers we can observe that a
absolute value oftp becomes larger, the smaller is the frac
dimension of theC set, i.e., it ismore fractal. For very small
values oftp the particles are almost distributed through t
whole system.
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In order to calculate transects of then field we integrate
Eq. ~5! backward in time with initial conditions on a one
dimensional cut withy51 and 0<x<2p. Many different
trajectories are obtained for different realizations of t
noise. Then we calculate the scalar field for any of the
trajectories following Eq.~4! and, finally, we perform the
averaging. In this way the values ofbC andbB in the transect
are calculated and displayed in Table I. In Fig. 2 the
transects are shown for a value ofD5231024 and tp5
20.005,20.01,20.03. Figure 2~a! is for a very smalltp5
20.005, so the effect of inertia is almost negligible and p
ticles are distributed through almost the whole phase sp
with no significant peaks in the concentration. Moreover,
spatial structure is always fractal as this case should co
spond with the passive scalar. Fortp520.01, Fig. 2~b!,
there appear peaks in the concentration which correspon
the clustering attractor. Between peaks one can also obs
the rough structure of the background set. This is beca
l;0.60.bB;0.34. In contrast, in Fig. 2~c!, obtained for
tp520.03, the background areas are always smooth
causel;0.92,bB;2.07.

TABLE I. bB and bC fractal dimensions and Lyapunov expo
nents for different values oftp .

tp bB bC D0 l

20.005 0.137~9! 20.015(2) 1.95~5! 0.58~8!

20.01 0.347~7! 20.018(7) 1.91~9! 0.60~2!

20.03 2.073~4! 20.177(9) 1.51~2! 0.91~9!
2-3
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BRIEF REPORTS PHYSICAL REVIEW E66, 027202 ~2002!
Finally, we calculate the first order structure functio
^dn& for the transects of Fig. 2. This is shown in Fig.
where we also plot a straight line with the slopea given in
the discussion below Eq.~7!. The agreement is rather acc
rate for scales larger thanLd;0.025.

Summing up, we have shown that a very complex spa
distribution may arise when particles with inertia are tra
ported by a chaotic flow. The inertia induces the aggrega
of particles in the so-called clustering set, diffusion stops
growing without bound of the density of particles in this s
and then the presence of the source term gives rise to
formation of inhomogeneous structures in the backgro
set. We have shown that these structures may show sm

FIG. 2. Transects of the density field along the liney51. ~a!
tp520.005,~b! tp520.01, and~c! tp520.03. Other parameter
used areA510, B510, w51, andD5231024.
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or fractal features depending on the relation between
Lyapunov exponents of the chaotic flow of the particles a
the values of the fieldb(x,t,0)5(1/t)*0

t
“•v„r (s),s…ds, in

the long-time limit. Also, the characterization of the spat
structures of the particles has been performed with the
order spatial structure function, and we have found tha
scales with an exponent that depends on the fractal dim
sion of theC set, the maximum Lyapunov exponent of th
particles flow, and the averages values ofb(x) over theC
andB sets.
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FIG. 3. Structure functions for the corresponding transects
Fig. 2. The solid line has the slope given by the theoretical pre
tion a5min„22D01bC/l,min(1,bB/l)….
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